
TRAFFIC GENERATION AND UNIX/LINUX SYSTEM
TRAFFIC CAPACITY ANALYSIS

James F Brady
Capacity Planner for the State Of Nevada

jfbrady@doit.nv.gov

Often requirements dictate that a transaction based application be capacity
tested before it is released into production using a traffic generator that
simulates customer requests against a target system. Many times the
feedback obtained from the traffic generator is insufficient to adequately
quantify the quality of the offered load produced and the analysis performed
on the target system resource consumption levels is insufficient to clearly
illustrate traffic capacity. This paper provides some suggestions for better
quantifying traffic generation quality and more clearly illustrating traffic
capacity when the target system is running in a Unix/Linux environment.

1. Introduction
Often requirements dictate that a transaction based
application be capacity tested before it is released into
production using some type of traffic generation
mechanism that simulates customer requests to a
target system. Many times the traffic generation portion
of such tests yields insufficient information to quantify
the offered load’s conformance to real world traffic
conditions and the statistical analysis of resource
utilization levels performed on the target system does
not clearly illustrate traffic capacity. This paper is
intended to provide some suggestions for better
quantifying traffic generation quality and more clearly
illustrating traffic capacity when the target system is
running in a Unix/Linux environment.

Whether one is traffic capacity testing a transaction
oriented application as part of the product development
process or demonstrating compliance with a capacity
requirement the usual approach is to acquire a
shareware or commercial traffic generation tool. This
tool is adapted to the situation at hand and run to
produce a stock set of graphs which show resource
consumption levels as a function of virtual users.
Figure 1 is an example of one such set of graphs for
mean response time and CPU utilization.

Virtual users are normally modeled as session scripts
like those represented in the Figure 2 matrix. The
virtual user session mix scenario shown is Web based
with transactions consisting of a login followed by
queries and/or updates and a logoff. A think time delay
is imposed between each script step in the five

separate virtual user scripts shown.

Figure 1: RT and CPU Vs Virtual Users

CPU Utilization

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180
Virtual Users

Pe
rc

en
t C

PU
 U

til
iz

at
io

n

system total

Response Time

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180
Virtual Users

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

mean

Figure 2: Virtual User Mix Scenario
Vuser Vuser Vuser Vuser Vuser

Delay Type 1 Type 2 Type 3 Type 4 Type 5 Total
Transaction Seconds 10% 15% 40% 10% 25% 100%
 LO G IN 10 1 1 1 1 1 100%
 Q uery1 15 1 1 1 75%
 Q uery2 10 1 1 1 50%
 Update1 20 1 10%
 Update2 15 1 15%
 LO G OUT 10 1 1 1 1 1 100%

55 45 35 30 45 40.5Script Tim e

Usually, traffic is ramped up by adding sets of virtual
user scripts until it is determined that a particular
resource is exhausted or a service level objective is
exceeded. The number of active virtual users at this
saturation point is declared to be the capacity of the
target system.

This virtual user approach to traffic capacity
specification and testing provides a basic
understanding of the target system’s resource
limitations. There are a couple of questions which, if
answered, will greatly enhance the quality of the test
performed and add to its credibility.

• Does the traffic generator being used present
a real world traffic pattern to the target system
and, if so, how can that pattern be quantified?

• Because the target system processes

transactions, not virtual users, what
transaction rate and mix does each virtual
user level tested represent?

The answer to the first question significantly enhances
test quality and the response to the second question
permits better identification of target system
bottlenecks and provides data to more clearly show
that system’s traffic capacity.

The approach taken in this paper to address these two
questions is, first, describe an example traffic capacity
testing environment and, second, use that environment
as a foundation for traffic generation quality and target
system traffic capacity discussions. These two
discussions then lead to a list of observations and an
associated set of recommendations. Some concluding
remarks and summary comments along with a traffic
generation methodology appendix complete the paper.

2. Traffic Capacity Test Environment
Figure 3 shows the layout of the example Traffic
Generator and associated target Unix/Linux System
from a process flow perspective. The traffic generator
in this example is also Unix/Linux based and has “n”
processes producing traffic for the target environment
over an Ethernet connection.

The flow of transactions in this situation occurs in the
following way. The target system’s i_comm process
receives transaction data initiated by one of the traffic
generator’s “n” traffic processes over the Ethernet
interface, reformats it and places it on the app
process’s message queue. The app process executes
logic and constructs a message that it deposits on one
of the “n” db_agent process message queues. The
selected db_agent formulates an SQL request and
submits it to the DBMS environment. One of the DBMS
db_serve processes retrieves the required data and
makes the data available to the requesting db_agent

which passes it forward to the app process. The app
process builds a response and hands it to the o_comm
process where it is reformatted and sent over Ethernet
to the traffic process initiating the request. The traffic
process analyzes the response to determine if it is
correct and records the transaction response time.

Figure 3: Traffic Generation Topology

This example transaction traffic flow is primarily
intended for illustrative purposes but can be viewed as
the typical Web Server, Application Server, and Data
Base Server implementation in a single serving
system. The comm processes perform the Web Server
tasks, the app process handles the Application Server
logic, and the db_agent along with the DBMS
environment provide the Database Server functionality.
Here message queues are used to communicate
between functional components instead of the
communications links associated with the three server
arrangement.
With this overall environment in mind the next section

Unix/Linux System

1db_serve ndb_serve
DBMS

Traffic Generator

E-net

traffic
1

traffic
n

o_commi_comm

db_agent
1 n db_agent

E-net

app

focuses on the portion of Figure 3 that simulates
customer requests against the target system, the
Traffic Generator. The emphasis in this discussion is
traffic generation quality and identification of needed
feedback mechanisms to insure that quality is
maintained throughout the testing period.

3. Traffic Generation
Traffic generation is usually accomplished with a
computer program running on one or more simulation
computers that launch requests, measure the time for
responses to occur, and determine if responses are
correct. Traditionally, virtual user script based traffic
generators, exemplified by Figure1 and Figure 2, are
implemented for this purpose but the one used in this
example, developed by the author, is set up differently.

The traffic generator implemented in this illustration is
transaction oriented, not virtual script based, and has
the advantage that the request statistics produced are
in the units of work presented to the target system, i.e.,
transactions/sec. This transaction model can be used
for traffic generation when connectionless protocols
like Web HTTP are being exercised. Further analysis is
necessary when using this technique to map traffic
volume to users supported.

Figure 4 is an output screen from this traffic generator
which reflects a run lasting 12 minutes where good,
bad, and late request statistics are reported every 100
seconds for both GET and POST Web queries. The
traffic mix implemented for this run is shown in Figure 5
as percentages of queries and updates.

The software is designed such that each process or
thread always makes the same type of transaction
request. In this example, each requesting process
performs its assigned query or update after it has first
successfully completed a single login.

The traffic run in Figure 4 includes 100 processes
creating traffic with the Figure 5 mix. The 50 GET and
50 POST processes yield an aggregate transaction
rate of slightly less than 10 transactions per second
with a mean delay between requests of approximately
10 seconds, i.e., 9996 milliseconds.

The traffic generator in Figure 4 produces its traffic
consistent with the most common real world
environment used for simulating transaction processing
traffic which is request independence, or random
arrivals. The random arrivals environment is referred to
in the literature as a Poisson process and is quantified
by two formulas from probability theory. The times
between arrivals)(t are negative exponentially
distributed and the number of arrivals in constant
length intervals are Poisson distributed. Therefore, the
9996 milliseconds is the mean of a negative
exponentially distribution set of delay times.

For a detailed discussion of how traffic is generated
with these statistical properties see reference
[BRAD04] and Appendix A at the end of this paper.

Figure 4: Traffic Generator Run
Linux Sat Feb 4 12:05:43 2006, 50 GET and 50 POST source(s), 3000 ms late
 ./web_traffic -t -i 100 -s 720 9996 perf_measure_100

 --------GET------- -------POST-------
 Time sent !recv good bad late good bad late
12:05:43 949 0 473 0 0 476 0 0
12:07:23 970 0 453 0 0 517 0 0
12:09:03 1000 0 503 0 0 497 0 0
12:10:43 966 0 475 0 0 491 0 0
12:12:23 1010 0 494 0 0 516 0 0
12:14:03 937 0 443 0 0 494 0 0
12:15:43 1005 0 482 0 0 523 0 0
 Total 6837 0 3323 0 0 3514 0 0

Caught a SIGALRM signal -- shutting down

Sat Feb 4 12:16:18 2006

Figure 5: Transaction Based Traffic Mix

Transaction Percent
 LOGIN Once Per Source

 Query1 50%

 Query2 33%

 Update1 7%

 Update2 10%

 LOGOUT 0%

Total 100%

Figure 6, is a pictorial representation of a random
arrivals pattern where the arrival times, t, are
represented by the non-uniform vertical bars and the
frequency counts, x, are the numbers indicating the
arrivals within the uniform intervals shown.
Mathematically, ()t is described by the negative
exponential probability density function, Equation 3.1,
which has a mean inter-arrival time of µ . The number

of arrivals ()x in constant length intervals is
mathematically illustrated as the Poisson probability
density function, shown as Equation 3.2, which has a
mean number of arrivals per interval of λ .

Figure 6: Random Arrivals

() µ

µ

t

etf
−

=
1 (3.1)

t

x

Arrival Times

Time Intervals
3 2 3 2 2 4

()
!x

exf
xλ

=
λ−

 (3.2)

Where:

ttimearrivalterinmean −=µ .
() iancervadevstdmeantffor ===µ, .

xervalintperarrivalsofnumbermean=λ .
() iancervameanxffor ==λ, .

Estimates of mean
_
x , variance 2s , and standard

deviation s are:

n

x
x

n

i
i∑

== 1
_

,
1

1

2_

2

−

 −

=
∑
=

n

xx
s

n

i
i

, riancevas = .

It is interesting to note that the mean of the negative
exponential distribution is equal to its standard
deviation and the mean of the Poisson distribution is
equal to its variance. Formulas for estimating mean,
standard deviation, and variance are provided above.

These parameter estimation formulas can be used to
analyze arrival data and make judgments concerning
the likelihood the arrivals are random. The arrival
summary statistics report in Figure 7 show these
characteristics for each of the eight traffic runs listed.
The traffic run pass 0200 of Figure 7 maps to the
Figure 4 run and shows a mean and standard deviation
inter-arrival time of 101.37 milliseconds and 99.05
milliseconds, respectively.

Figure 7: Arrival Summary Statistics
Arrival Summary Statistics (ms) - Demo System Saturday 02/04/2006
pass n tps median mean sdev min max
---- ------- -------- ------- --------- --------- ------- -------
1000 1321 2.20 304 452.80 456.81 0 3573
0300 3936 6.56 103 151.42 157.39 0 1468
0200 5867 9.78 72 101.37 99.05 0 1011
0130 8866 14.78 47 66.82 67.33 0 717
0110 10223 17.04 40 57.88 58.01 0 556
0100 11147 18.58 37 53.01 52.53 0 448
0090 12613 21.02 32 46.79 47.37 0 502
0085 13472 22.45 30 43.76 43.94 0 388

Therefore, the best feedback for quantifying the quality
of the offered load produced by a traffic generator
creating random arrivals traffic is to compute inter-
arrival time mean and standard deviation. If these two
statistics are close to the same value, traffic generation
quality is good but if they are not, traffic generation
quality is suspect and can yield misleading traffic
capacity results.

Presumably, traffic generators which use the
techniques exemplified in Figure 2 provide transaction
arrival pattern statistics like those contained in Figure
7. The virtual user script mechanism represented by
Figure 2 is unlikely to produce a random arrivals traffic
pattern, however, because the think times are fixed

values, or if “random delay” is an option, it is usually
specified as a minimum and maximum range of delay
times. This specification is not consistent with the
negative exponential distribution which contains one
parameter, the arithmetic mean.

Whether a traffic generator is virtual script or
transaction based, statistical feedback regarding the
quality of its request launch pattern is important. The
test results obtained from a traffic generator that does
not provide inter-arrival time statistics or whose inter-
arrival mean and standard deviation are available but
not close to each should be scrutinized very carefully.

It also seems that the virtual user script environment is
one where a consistent and representative transaction
traffic mix may be difficult to maintain throughout the
example eight runs represented in Figure 7. This is
likely because it is hard to anticipate transaction mix
from sets of running script combinations. Transaction
mix consistency is important for bottleneck
identification, which is a topic discussed in the next
section.

The eight traffic runs reflected in the Figure 7 arrival
statistics yield the target system response time
statistics shown in Figure 8. Note the mean and
standard deviation of response times are close in value
and therefore appear to be negative exponential in
nature. It is the author’s experience that this
phenomenon occurs quite often even though there is
no causal relationship between response times and the
negative exponential as there is for inter-arrival times.

Figure 8: Response Time Summary Stats
Response Time Summary Stats (ms) - Demo System Saturday 02/04/2006
pass n tps mean sdev p95 min max
---- ------- -------- --------- --------- ------- ------- -------
1000 1322 2.20 87.92 82.27 253 1 613
0300 3937 6.56 116.45 111.97 343 1 903
0200 5868 9.78 150.22 142.62 434 1 1423
0130 8867 14.78 203.23 198.99 603 1 1623
0110 10224 17.04 242.02 234.59 723 1 1983
0100 11148 18.58 291.49 293.35 883 1 2823
0090 12614 21.02 463.68 457.80 1383 1 4742
0085 13473 22.45 712.08 710.31 2143 1 7884

Now that traffic generation quality indicators have been
identified the next section focuses on traffic capacity
analysis of the Unix/Linux Target System portion of the
Traffic Generation Environment in Figure 3. This
analysis uses the eight offered traffic increments
contained in the Figure 7 Arrival Summary Statistics
Table and in the corresponding Figure 8 Response
Time Summary Stats Table.

4. Target System Traffic Capacity
The most important outcome of the target system
resource consumption analysis is to clearly illustrate
traffic capacity and identify any system imbalances that
exist. Often the best way to show a system’s capacity
characteristics is to draw a picture of resource
consumption levels and response time service levels

as a function of incremental increases in traffic volume.
The graphs in Figure 9 are such a picture and show
response time and resource consumption levels for
CPU, Disk, and Network Packets as a function of
transactions per second.

These graphs are the end result of a systematic traffic
capacity testing procedure where traffic is generated
as described in Section 3 and resource consumption
information is collected and analyzed on the target
Unix/Linux System using tools developed by the
author. These tools invoke and process data gathered
by standard Unix/Linux metering utilities; i.e., sar,
vmstat, iostat, netstat, ps, and Linux /proc system
counters. Each of the eight traffic rate levels shown are
produced by sampling resource consumption levels
every 15 seconds over a twelve minute period with the
negative effects of startup and shutdown mitigated by
restricting the analysis to the middle ten minutes.

Response time in Figure 9 is expressed in terms of
mean and 95% level with CPU Utilization divided into
operating system and total percentages. The 95% level
of response time provides an important indication of
response time variability not available from the mean
value and greatly enhances understanding of the target
system’s service level characteristics.

It is interesting to contrast the CPU Utilization graph in
Figure 9 with Figure 1. Figure 9 is a graph of CPU
utilization versus transactions per second and Figure 1
is a plot of CPU utilization against virtual users. If traffic
mix is held constant for both scenarios across traffic
volume runs, a balanced system yields a straight line
relationship for Figure 9 but does not for Figure 1. The
Figure 1 curve is non-linear because an incremental
increase in virtual users adds less then a proportional
amount of offered traffic to the target system since
virtual user transaction response times are elongated.
Therefore, whenever possible, it is useful to plot
resource utilization levels as a function of traffic rate to
determine if bottlenecks exist in resources such as
CPU, Disk, and Network interfaces. The linear
relationship between these three resources and the
transaction rate for all test runs indicates they are
balanced resources and not bottlenecks.

The pie chart in Figure 10 provides an indication of
CPU Utilization from a running process perspective as
opposed to the resource consumption orientation of
Figure 9. This graph shows CPU utilization levels for
the processes outlined in the Figure 3 Traffic
Generation Topology. It is created by proportioning the
CPU time consumed by these processes during the
four highest traffic test runs performed. The Figure 11
table that follows the pie chart is the process analysis
output from these four traffic runs.

Figure 9: Target System Traffic Capacity

CPU Utilization

0

20

40

60

80

100

0 4 8 12 16 20 24
Trans/Sec

Pe
rc

en
t C

PU
 U

til
iz

at
io

n

system total

Disk I/Os

0

20

40

60

80

100

0 4 8 12 16 20 24
Trans/Sec

D
is

k
I/O

s
/ S

ec

read/sec read&write/sec

Packets

0

200

400

600

800

1000

1200

0 4 8 12 16 20 24
Trans/Sec

Pa
ck

et
s

/ S
ec

rec/sec rec&send/sec

Response Time

0

500

1000

1500

2000

2500

0 4 8 12 16 20 24
Trans/Sec

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

mean p95

Figure 10: Process Pie Chart
Process Proportions

i_comm_4517
2%

db_serve_268
5%

o_comm_4516
1%

db_serve_260
35%

db_serve_262
34%

db_agents
10%app_4536

13%
db_serve_260
db_serve_262
db_serve_268
o_comm_4516
i_comm_4517
app_4536
db_agents

Figure 11: Process Proportions Table
Process Status Summary Statistics - Demo System Saturday 02/04/2006
 --0110--- --0100--- --0090--- --0085--- ----Sum-----
 name pid sec % sec % sec % sec % sec %
 ----------- ------- ----- --- ----- --- ----- --- ----- --- ----- ------
 db_serve 260 319 35 357 35 406 35 424 35 1506 35.04
 db_serve 262 316 34 347 34 391 34 408 34 1462 34.02
 db_serve 268 49 5 53 5 60 5 64 5 226 5.26
 o_comm 4516 11 1 11 1 12 1 13 1 47 1.09
 i_comm 4517 14 2 15 1 17 1 19 2 65 1.51
 app 4536 116 13 128 13 149 13 163 13 556 12.94
 db_agent 4542 14 2 17 2 20 2 21 2 72 1.68
 db_agent 4548 15 2 17 2 19 2 20 2 71 1.65
 db_agent 4549 16 2 18 2 19 2 20 2 73 1.70
 db_agent 4550 16 2 18 2 20 2 20 2 74 1.72
 db_agent 4551 16 2 17 2 20 2 20 2 73 1.70
 db_agent 4554 16 2 17 2 19 2 21 2 73 1.70
 total 918 102 1015 101 1152 101 1213 102 4298 100.00

In the previous section it was suggested that traffic
generation quality can be judged by determining how
close to equal the mean and standard deviation of the
transaction inter-arrival times are to each other. In this
section it is shown that graphing resource consumption
levels against traffic rates makes traffic capacity levels
clearer and helps identify bottlenecks. The next section
contains some further observations regarding traffic
generation quality and target system capacity
determination.

5. Observations
The following are observations which result from and
expand on the discussion thus far.

1. Traffic pattern measurements like those in Figure 7

are an important quality indicator for any traffic
capacity test and transaction rates are needed to
produce clear and concise traffic capacity analysis
graphs such as those in Figure 9.

2. Traffic generating software is typically

implemented on a Windows XP or Unix/Linux
computer which simulates user request timing by
having the assigned thread or process call a sleep
function. The Unix/Linux traffic generator
represented in Figure 4, for example, calls
nanosleep() for each negative exponentially drawn
GET or POST request inter-arrival time. The
operating system awakens the affected thread or
process when the sleep time expires and puts it on
the ready to run list for execution at its dynamically
assigned priority. If the traffic generator is relatively
idle, execution occurs close to the requested time
but if the traffic generator is heavily loaded
execution may be delayed for a significant period
of time skewing the traffic pattern from the original
intent.

3. It seems that many of the virtual user script based

traffic generators described in Section 1 are set up
(at least by default) with no exponential inter-
arrival mechanism for starting script sequences or
simulating think time delays between script
transaction requests. Typically, a significant
number of scripts started under these
circumstances will cause the traffic generator to
produce transaction requests in batches rather

than in the desired asynchronous manner.

4. If a particular target environment requires multiple

traffic generators for adequate loading, a set of
generators which individually produce negative
exponential inter-arrival times, Figure 7, will yield a
single stream of traffic with the same arrival
pattern when their traffic is merged. This
“memoryless” property of the negative exponential
permits traffic to be increased by adding traffic
generators while maintaining traffic pattern
integrity.

5. Poor quality traffic pattern has its greatest

detrimental impact on user response time
estimation and can mislead application developers
into erroneously thinking they need to change the
sizes of resources like buffers and inter-process
communication message queues.

6. The virtual user traffic mix in Figure 2 is very

common but seems a bit unrealistic because a
user login and logout are performed for every
script execution. Users generally login a few times
a day and seldom logout. They usually just quit the
Web browser.

7. Both the virtual user script traffic generator of

Figure 1 and the traffic generator represented in
Figure 4 operate in a closed queuing system
environment. That is, each thread or process
created is a single traffic source that makes a
transaction request, waits for the response, and
delays for some “think” time before making the
next request. Since response time is a portion of
the overall delay time between requests its
probability distribution can influence the request
traffic pattern. If response times are negative
exponentially distributed, as in Figure 8, they are
memoryless. If they are not negative exponentially
distributed but small relative to the “think” time,
their impact on the request traffic pattern is
mitigated.

8. Even though the focus in this paper is on

Unix/Linux target systems, the Windows
environment provides the support to construct
Figure 9 as well. In fact, the author has produced
that picture many times for Windows based target
systems using the standard “perfmon” counter log
template tool which, when executed, creates a
“.csv” file of resource consumption statistics.

6. Recommendations
The above observations in conjunction with the
comments made in the earlier sections lead to the
following list of recommendations.

1. Collect performance statistics on the traffic
generator as well as the target system or systems.
All traffic capacity studies performed using the
Unix/Linux traffic generator in Figure 4 include a
set of Figure 9 graphs for the traffic generator as
well as those for the target systems. One useful
traffic capacity test cross-check is to see if the
packet rates between the traffic generator and the
target system to which it is sending and receiving
are approximately the same but in transmit/receive
reverse order.

2. Whether performing the traffic capacity study or

receiving one from a vendor the following items
should be included in the results report.

 A performance summary that lists
capacity statistics such as maximum
transaction rates, resource consumption
levels, and response time service levels

 Figure 3: Traffic Generation Topology
 Figure 7: Arrival Summary Statistics
 Figure 8: Response Time Summary Stats
 Figure 9: Traffic Capacity Graphs for the

traffic generator as well as all target
systems

 Figure 10: Process Pie Chart
 Hardware and Software Configurations for

the traffic generator and all target systems
 The transaction traffic mix used

throughout the study
 An estimate of users supported based on

the traffic mix.
These items make clear the test environment and
the results obtained so future tests on enhanced
software and faster platforms can be put in proper
context.

3. A completed traffic capacity study should consist
of a hierarchy of information applicable to both
executives and analysts. The results report in
Recommendation 2 provides management with a
high level view of the system’s capacity status.
The response time data and resource consumption
information contained in the Unix/Linux stat data,
e.g., vmstat, or Windows perfmon output should be
available for analysts to review and use as a
performance improvement feedback mechanism.

4. When looking for traffic generator products, focus

on those that possess the following functionality:
 Provides real time feedback on

transaction event counts and service
levels being achieved. The traffic
generator in Figure 4 is set up to report
GET and POST transaction counts every
100 seconds during each 720 second run
and identify the number of response times
that exceed three seconds as late. This
real time feedback is especially useful

when performing failover tests at high
traffic volumes.

 Possesses a mechanism to be sure the
correct data is returned from a transaction
query. Many Web applications, for
example, default fail to the login page but
the Figure 4 traffic generator performs a
string comparison to be sure the Web
page returned is correct.

 Has the capability to randomly select
account specific data from a large list of
accounts. This functionality provides a
more real world environment by defeating
the I/O subsystem cache a significant
percent of the time thus allowing disk
activity to be observed and measured.
One resent test using the Figure 4 traffic
generator involved random selection from
10,000 account ID values which caused
the needed disk activity to occur.

5. Perform traffic capacity studies by running at each

traffic rate for a significant period of time like the
example twelve minutes and systematically
increase the traffic rate in this manner until
resource limits are reached. During the analysis
portion of the study mitigate the negative effects of
startup and shutdown by restricting the data for
each traffic rate to the centered time period which
is ten minutes in the example provided.

6. Whenever available, report service level percentile

data along with mean value information. The mean
response time is a very useful statistic but the 95%
response time helps make response time
variability more explicit.

7. Conclusions
Most of the products available that are designed to
create traffic for traffic capacity studies are structured
around the idea of virtual user scripts. The emphasis of
these tools, from a results perspective, is to determine
how many virtual users a target system can support.
While this virtual user information is useful, there are
some fundamental issues regarding traffic pattern
quality and target system bottleneck identification that
are deemphasized or ignored.

These issues, if addressed, add credibility to the
results produced and help product developers focus
their performance improvement efforts. The virtual user
script approach can work well as long as the traffic
produced possesses a real world pattern and is
quantifiable in target system terms; e.g., transactions
per second. The emphasis should be on traffic pattern
quality, traffic mix consistency, and traffic volume
capacity not virtual user script count.

8. Summary
This document discusses the mechanics of traffic
capacity testing transaction based applications running
in a Unix/Linux environment. It explores some
suggestions for quantifying the quality of the traffic
being produced and more clearly articulating the traffic
capacity of the target system. Some observations are
made from these traffic generation and capacity
specification remarks resulting in a set of
recommendations and a list of conclusions.

9. References
[ALLE78] A.O. Allen, “Probability, Statistics, And
Queueing Theory”, Academic Press, Inc., Orlando,
Florida, (1978).

[BRAD04], J.F.Brady, “Traffic Generation Concepts –
Random Arrivals”, www.perfdynamics.com, Classes,
Supplements. (2004).

[COOP84] R. B. Cooper, “Introduction to Queueing
Theory”, Elsevier Science Publishing Co., Inc., New
York, N.Y., (1984).

[GIFF78] W.C. Giffin, “Queueing: Basic Theory and
Applications”, Grid, Inc, Columbus, Ohio, (1978).

[KLEI75] L. Kleinrock, “Queueing Systems Volume 1
and 2”, John Wiley & Sons, New York, N.Y., (1975).

[WHIT75] J.A. White, J.W. Schmidt, G.K. Bennett,
“Analysis of Queueing Systems”, Academic Press Inc.,
New York, N.Y., (1975).

Appendix A

Introduction
This appendix discusses the formulas used to produce
negative exponential inter-arrival time traffic by first
defining these formulas, second providing a graphical
illustration of them, and third deriving them from first
principles

Traffic Generation Formula
Either Equation A.1 or Equation A.2, below, is used to
construct times between arrivals that adhere to the
random arrivals requirement. Applying Equation A.2,
the inter-arrival time, 0t , is obtained by multiplying

minus the mean inter-arrival time, µ− , by the natural
logarithm of a random number between zero and one,
()0rln . Equation A.2 is generally used over Equation

A.1 to obtain values of 0t because ()00 1 rlnt −µ−=
and ()00 rlnt µ−= yield symmetrical results and
Equation A.2 requires one less arithmetic operation
than does Equation A.1.

()00 1 rlnt −µ−= (A.1)
()00 rlnt µ−= (A.2)

Where:
arrivalnexttheuntiltimet =0
)e(lnlognaturalln 1==
timearrivalerintmean −=µ

10 00 ≤≤= rnumberrandomr

Traffic Generation Illustration
The graph and table in Figure A.1 provide motivation
for using Equation A.1 or Equation A.2 to obtain
independent inter-arrival times through an example
with the mean inter-arrival time, 5=µ .

The technique used to produce the negative
exponentially distributed inter-arrival times is the
Cumulative Distribution Function (CDF) reverse
transformation method implemented in many
simulation software packages.

Figure A.1 illustrates this reverse transformation
technique graphically. A uniformly distributed random
number (0,1) is drawn and its location is found on the
()tF axis. Then, a horizontal line is drawn from

the ()tF axis until it intersects the curve. The delay
time until the next arrival is the t axis value at that
intersection point. For example, if r = .50 is drawn at
random the corresponding inter-arrival time is equal to
3.5.

Figure A.1: CDF Reverse Transformation

())(CDFFunctionDistCumExpNegtF =

() () dttftFr
t

∫==
0

dte
t t

∫
−

=
0

0

1 µ

µ

Neg Exp Cum Dist Function for mean = 5

0.00
0.10
0.20
0.30
0.40
0.50

0.60
0.70
0.80
0.90
1.00

0 2 4 6 8 10 12

inter-arrival time (t)

F(
t)

 =
 r

an
do

m
 n

um
be

r
(r

)

t F(t)
t = -u*ln(1-r) r

0.0 0.0000
0.5 0.1000
1.1 0.2000
1.8 0.3000
2.6 0.4000
3.5 0.5000
4.6 0.6000
6.0 0.7000
8.0 0.8000
11.5 0.9000

As can be seen, the reverse transformation
mechanism takes advantage of the fact that the range
of the CDF for any probability distribution is zero
through one. When random numbers are drawn from a
uniform (0,1) probability distribution and mapped as
described the resulting samples have the probability
distribution characteristics of the CDF function
implemented, which in this case, is the negative
exponential.

Formula Derivation
What follows is a detailed derivation of Equation A.1
and Equation A.2. The first step is to integrate the
negative exponential probability density function over
the range ()00 t, as shown in Equation A.3 through
Equation A.11. The second step, detailed in Equation
A.12 through Equation A.18, is to set the results of this
integral equal to a (0,1) random number, 0r , and solve

for 0t , the desired time to the next arrival.

Step 1: Integrate the inter-arrival time probability
density function over the range ()00 t, :

() µ

µ

t

etf
−

=
1 (A.3)

() () dttftF
t

∫=
9

0
0 (A.4)

 () dtetF
t t

∫=
−0

0
0

1 µ

µ
 (A.5)

() dtetF
t t

∫=
−0

0
0

1 µ

µ
 (A.6)

From Calculus:

a
edte

at
at =∫ (A.7)

Evaluate the CDF at its limits ()00 t, :

()
0

0

0
1

tt

etF

−=

−
µµ

µ
 (A.8)

() ()

−−

−=

−
0

0

01 eetF
t

µµ
µ

µ (A.9)

()

−=

−
µµµ

µ

01
0

t

etF (A.10)

() µ
0

10

t

etF
−

−= (A.11)

Step 2: set ()00 tFr = and solve for 0t :

() µ
0

100

t

etFr
−

−== (A.12)

µ
0

10

t

er
−

−= (A.13)

01
0

re
t

−=
−
µ (A.14)

()01
0

rlneln
t

−=

 −
µ (A.15)

()0
0 1 rlnt

−=−
µ

 (A.16)

()00 1 rlnt −µ−= (A.17)

Given the symmetry of () 001 randr− :

()00 rlnt µ−= (A.18)

